Факультатив с применением позиционных антагонистических игр. Антагонистические матричные игры. Как происходит выбор стратегии в матричной игре

Andromeda 25.04.2024
Andromeda

В качестве основного допущения в теории игр предполагается, что каждый игрок стремится обеспечить себе максимально возможный выигрыш при любых действиях партнера. Предположим, что имеется конечная антагонистическая игра с матрицей выигрышей первого игрока и соответственно матрицей выигрышей второго игрока . Пусть Игрок 1 считает, что какую бы стратегию он ни выбрал, Игрок 2 выберет стратегию, максимизирующую его выигрыш, и тем самым минимизирующую выигрыш Игрока 1.

Таким образом, Игрок 1 выбирает i

Игрок 2 точно также стремится обеспечить себе наивысшую величину выигрыша (или, что эквивалентно, наименьшую величину проигрыша) вне зависимости от выбранной стратегии противника. Его оптимальной стратегией будет столбец Н 0 с наименьшим максимальным платежом. Таким образом, Игрок 2 выберет j -ю стратегию, которая является решением задачи

В итоге, если Игрок 1 придерживается избранной стратегией (называемой максиминнной стратегией ), его выигрыш в любом случае будет меньше максиминного значения (называемого «нижней ценой игры» ), т.е.

Соответственно, если Игрок 2 придерживается своей минимаксной стратегии, то его проигрыш будет не больше максиминного значения (называемого «верхней ценой игры» ), т.е.

В случае, когда верхняя цена игры равна нижней, т.е. = , оба игрока получают свои гарантированные платежи, а значение h ij * называется ценой игры .

Элемент матрицы h ij матрицы выигрышей, соответствующей стратегиям, называется седловой точкой матрицы Н .

В случае, если цена антагонистической игры равна 0, игра называется справедливой .

Рассмотрим игру, в которой Игрок 1 располагает двумя стратегиями, а Игрок 2 – тремя. Матрица выигрышей Игрока 1 имеет вид:

Замечание . Поскольку мы рассматриваем пример антагонистической игры, то матрица выигрышей Игрока 2 будет Н 2 =-Н 1 .

Игрок 1 рассчитывает, что если он выберет первую стратегию (т.е. первую строку матрицы Н 1 ), то противник выберет свою вторую стратегию (т.е. второй столбец) так, что выигрыш будет равен 1 . Если же он выбирает вторую стратегию, то противник может выбрать первую стратегию, так что выигрыш будет равен -1.

Проанализировав полученные значения: Игрок 1 останавливается на своей первой стратегии, которая обеспечивает ему максимальный гарантированный выигрыш, равный 1.

Точно также Игрок 2 рассматривает свои наихудшие варианты, когда противник выбирает первую или вторую стратегии, или когда противник выбирает вторую стратегию, когда Игроком 2 выбран третий столбец. Этим варианты соответствуют максимальным значениям столбцов 2, 1 и 6.



Взяв минимальные значения этих максимумов, Игрок 2 останавливается на своей второй стратегии, при которой его проигрыш минимален и равен :

Следовательно, в этой игре существуют совместные выборы стратегий, те. Е

Следовательно в этой игре разумно ожидать, что противники будут придерживаться избранных стратегий. Матричная антагонистическая игра, для которой - называется вполне определенной, или игрой имеющей решение в чистых стратегиях.

Однако не все матричные антагонистические игры являются вполне определенными.

Игры, в которых выполняется строгое неравенство, называется не полностью определенными играми (или играми, не имеющими решения в чистых стратегиях).

Рассмотрим пример такой игры:

Для этой игры .

В итоге если игроки будут следовать предложенным выше правилам, то Игрок 1 выберет стратегию 1 и будет ожидать, что Игрок 2 выберет стратегию 2, при которой проигрыш равен -2, в то время как Игрок 2 изберет стратегию 3 и будет ожидать что Игрок 1 выберет стратегию 2 с выигрышем равным 4.

Однако если Игрок 2 выберет свою третью стратегию, то Игрок 1 поступит правильнее, выбирая вторую стратегию, а не первую стратегию. Аналогично, если Игрок 1 выберет первую стратегию, Игроку 2 выгоднее выбрать вторую стратегию, а не третью. По всей видимости, в играх подлобного типа принцип решения в чистых стратегиях оказывается непригодным.

В описанной ситуации игрокам становится важно, чтобы противник не угадал, какую стратегию он будет использовать. Для осуществления этого плана игрокам следует пользоваться так называемой смешанной стратегией.

По существу, смешанная стратегия игрока представляет собой схему случайного выбора чистой стратегии. Математически ее можно представить как вероятностное распределение на множестве чистых стратегий данного игрока. В итоге вектор , где соответствует вероятности применения Игроком 1 -той стратегии и , задает смешанную стратегию этого игрока. Аналогично определяется смешанная стратегия у Игрока 2 .



Мы будем предполагать использование игроками их смешанных стратегий независимым, так что вероятность, с которой Игрок 1 выбирает тую стратегию, а Игрок 2 - - ю, равна . В этом случае платеж . Суммируя по и , найдем математическое ожидание выигрыша Игрока 1:

или матричных обозначениях

На множестве смешанных стратегий Игрок 1, стремящийся достичь наибольшего из гарантированных выигрышей, выбирает вектор вероятностей так, чтобы получить максимум минимальных значений ожидаемых выигрышей, т.е. он решает задачу:

.

Аналогично целью Игрока 2 является достижение минимума максимальных значений своих проигрышей, т.е. он решает задачу

.

Фундаментальным результатом теории игр является так называемая Теорема о минимаксе, которая утверждает, что сформулированные задачи Игрока 1 и Игрока 2 всегда имеют решение для любой матрицы выигрышей , и кроме того, .

Как и для вполне определенных игр, стратегия Игрока 1 называется Максиминной стратегией , стратегия Игрока 2 - минимаксной стратегией, значение - ценой игры; в случае, когда игра называется справедливой.

Очевидным следствием из Теоремы о минимаксе является соотношение:

.

которое означает, что никакая стратегия Игрока 1 не позволит выиграть ему сумму большую, чем цена игры, если Игрок 2 применит свою минимаксную стратегию, и никакая стратегия Игрока 2 не даст возможности проиграть ему суму меньшую, чем цена игры, если Игрок 1 применяет свою максиминную стратегию.

Это верно также и для чистых стратегий, как для частного случая смешанных стратегий. (Т.к. чистая стратегия – это стратегия, используемая с вероятностью 1): Использование любой чистой стратегии, в случае если противник использует свою оптимальную стратегию, не позволяет выиграть больше (проиграть меньше) цены игры.

Это факт часто используют для разработки конкретных алгоритмов решения антагонистических матричных игр.

Вычисление оптимальных стратегий значительно усложняется с ростом числа стратегий. Для поиска оптимальных стратегий можно использовать несколько подходов.

Для уменьшения размерности игры используется доминирование строк и столбцов. Обычно говорят, что -я стока матрицы доминирует -ю строку (т. е. одна чистая строка доминирует другую), если для всех , хотя бы для одного .

Аналогично -й столбец доминирует -й столбец, если для всех , хотя бы для одного .

Смысл этого определения состоит в том, что доминирующая стратегия никогда не хуже, а в некоторых случаях даже лучше, чем доминируемая стратегия. Отсюда, важный вывод – игроку нет необходимости использовать доминируемую стратегию. Это позволяет на практике все доминируемые строки и столбцы отбросить, что позволит уменьшить размеры матрицы (заметим, что этот подход может использоваться также при поиске решения в чистых стратегиях).

Пример. Рассмотрим игру со следующей матрицей:

→ третья строка этой матрицы доминирует вторую

Исключение второй строки приводит к матрице: третий столбец в этой урезанной матрице доминирует второй, и исключение второго столбца дает: .

В итоге, если можно найти решение для полученной игры, то его легко использовать для решения исходной игры, просто прописав исключенным строкам и столбцам нулевые вероятности.

Другой метод упрощения матрицы основан на свойстве, согласно которому аффинное преобразование матрицы платежей (т.е. преобразование всех элементов матрицы по правилу , где ) не изменяет решения игры; кроме того, цена преобразованной игры может быть получена из цены первоначальной игры по такому же правилу: . Это означает, что для задания игры в принципе безразлично, в каких единицах измеряются выигрыши (в рублях или долларах) прибавление (вычитание) некоторой фиксированной суммы изменит на такую же сумму выигрыш (проигрыш) каждого из игроков не меняя решение игры.

Это свойство может быть использовано для упрощения и придания наглядности матрице выигрышей (использовано по аналогии с операциями над матрицами – умножение матрицы на постоянное число, сложение и вычитание строк, кроме того, это свойство позволяет любую матричную антагонистическую игру сделать справедливой, для этого необходимо вычислить цену игры из всех элементов матрицы выигрышей).

Кроме того может быть использован графический способ для решения игры (и вообще игр или ).

Например, матрица выигрышей имеет вид: .

Пусть Игрок 1 выбирает свою первую стратегию с вероятностью , а вторую с вероятностью . Если Игрок 2 выбирает свою первую стратегию, то (из первого столбца матрицы) математическое ожидание для Игрока 1 будет равно . Если Игрок 2 выбирает свою вторую стратегию, то в соответствии со вторым столбцом матрицы: .

Каждое из этих уравнений может быть изображено графически отрезком прямой линии в области на графике с координатами и .

Самым простым случаем, подробно разработанным в теории игр, является конечная парная игра с нулевой суммой (антагонистическая игра двух лиц или двух коалиций). Рассмотрим такую игру G, в которой участвуют два игрока А и В, имеющие противоположные интересы: выигрыш одного равен проигрышу другого. Так как выигрыш игрока А равен выигрышу игрока В с обратным знаком, мы можем интересоваться только выигрышем а игрока . Естественно, А хочет максимизировать, а В - минимизировать а.

Для простоты отождествим себя мысленно с одним из игроков (пусть это будет А) и будем его называть «мы», а игрока В - «противник» (разумеется, никаких реальных преимуществ для А из этого не вытекает). Пусть у нас имеется возможных стратегий а у противника - возможных стратегий (такая игра называется игрой ). Обозначим наш выигрыш в случае, если мы пользуемся стратегией а противник - стратегией

Таблица 26.1

Предположим, что для каждой пары стратегий выигрыш (или средний выигрыш) a нам известен. Тогда в принципе можно составить прямоугольную таблицу (матрицу), в которой перечислены стратегии игроков и соответствующие выигрыши (см. таблицу 26.1).

Если такая таблица составлена, то говорят, что игра G приведена к матричной форме (само по себе приведение игры к такой форме уже может составить трудную задачу, а иногда и практически невыполнимую, из-за необозримого множества стратегий). Заметим, что если игра приведена к матричной форме, то многоходовая игра фактически сведена к одноходовой - от игрока требуется сделать только один ход: выбрать стратегию. Будем кратко обозначать матрицу игры

Рассмотрим пример игры G (4X5) в матричной форме. В нашем распоряжении (на выбор) четыре стратегии, у противника - пять стратегий. Матрица игры дана в таблице 26.2

Давайте, поразмышляем о том, какой стратегией нам (игроку А) воспользоваться? В матрице 26.2 есть соблазнительный выигрыш «10»; нас так и тянет выбрать стратегию при которой этот «лакомый кусок» нам достанется.

Но постойте: противник тоже не дурак! Если мы выберем стратегию он, назло нам, выберет стратегию , и мы получим какой-то жалкий выигрыш «1». Нет, выбирать стратегию нельзя! Как же быть? Очевидно, исходя из принципа осторожности (а он - основной принцип теории игр), надо выбрать ту стратегию, при которой наш минимальный выигрыш максимален.

Таблица 26.2

Это - так называемый «принцип мини-макса»: поступай так, чтобы при наихудшем для тебя поведении противника получить максимальный выигрыш.

Перепишем таблицу 26.2 и в правом добавочном столбце запишем минимальное значение выигрыша в каждой строке (минимум строки); обозначим его для строки а (см. таблицу 26.3).

Таблица 26.3

Из всех значений (правый столбец) выделено наибольшее (3). Ему соответствует стратегия . Выбрав эту стратегию, мы во всяком случав можем быть уверены, что (при любом поведении противника) выиграем не меньше, чем 3. Эта величина - наш гарантированный выигрыш; ведя себя осторожно, меньше этого мы получить не можем может быть, получим и больше).

Этот выигрыш называется нижней ценой игры (или «максимином» - максимальный из минимальных выигрышей). Будем обозначать его а. В нашем случае

Теперь станем на точку зрения противника и порассуждаем за него. Он ведь не пешка какая-нибудь, а тоже разумен! Выбирая стратегию, он хотел бы отдать поменьше, но должен рассчитывать на наше, наихудшее для него, поведение. Если он выберет стратегию мы ему ответим и он отдаст 10; если выберет - мы ему ответим и он отдаст и т. д. Припишем к таблице 26.3 добавочную нижнюю строку и в ней запишем максимумы столбцов Очевидно, осторожный противник должен выбрать ту стратегию, при которой эта величина минимальна (соответствующее значение 5 выделено в таблице 26.3). Эта величина Р - то значение выигрыша, больше которого заведомо не отдаст нам разумный противник. Она называется верхней ценой игры (или «ми-нимаксом» - минимальный из максимальных выигрышей). В нашем примере и достигается при стратегии противника

Итак, исходя из принципа осторожности (перестраховочного правила «всегда рассчитывай на худшее!»), мы должны выбрать стратегию А а противник - стратегию Такие стратегии называются «минимаксными» (вытекающими из принципа минимакса). До тех пор, пока обе стороны в нашем примере будут придерживаться своих минимаксных стратегий, выигрыш будет равен

Теперь представим себе на минуту, что мы узнали о том, что противник придерживается стратегии . А ну-ка, накажем его за это и выберем стратегию мы получим 5, а это не так уж плохо. Но ведь противник - тоже не промах; пусть он узнал, что наша стратегия , он тоже поторопится выбрать , сведя наш выигрыш к 2, и т. д. (партнеры «заметались по стратегиям»). Одним словом, минимаксные стратегии в нашем примере, неустойчивы по отношению к информации о поведении другой стороны; эти стратегии не обладают свойством равновесия.

Всегда ли это так? Нет, не всегда. Рассмотрим пример с матрицей, данной в таблице 26.4.

В этом примере нижняя цена игры равна верхней: . Что из этого вытекает? Минимаксные стратегии игроков А и В будут устойчивыми. Пока оба игрока их придерживаются, выигрыш равен 6. Посмотрим, что будет, если мы (А) узнаем, что противник (В) держится стратегии В?

Таблица 26.4

А ровно ничего не изменится, Потому что любое отступление от стратегии может только ухудшить наше положение. Равным образом, информация, полученная противником, не заставит его отступить от своей стратегии Пара стратегий обладает свойством равновесия (уравновешенная пара стратегий), а выигрыш (в нашем случае 6), достигаемый при этой паре стратегий, называется «седловой точкой матрицы». Признак наличия седловой точки и уравновешенной пары стратегий - это равенство нижней и верхней цены игры; общее значение называется ценой игры. Мы будем обозначать его

Стратегии (в данном случае ), при которых этот выигрыш достигается, называются оптимальными чистыми стратегиями, а их совокупность - решением игры. Про саму игру в этом случае говорят, что она решается в чистых стратегиях. Обеим сторонам А и В можно указать их оптимальные стратегии, при которых их положение - наилучшее из возможных. А что игрок А при этом выигрывает 6, а игрок В - проигрывает что же, таковы условия игры: они выгодны для А и невыгодны для В.

У читателя может возникнуть вопрос: а почему оптимальные стратегии называются «чистыми»? Несколько забегая вперед, ответим на этот вопрос: бывают стратегии «смешанные», состоящие в том, что игрок применяет не одну какую-то стратегию, а несколько, перемежая их случайным образом. Так вот, если допустить кроме чистых еще и смешанные стратегии, всякая конечная игра имеет решение - точку равновесия. Но об этом речь еще впереди.

Наличие седловой точки в игре - это далеко не правило, скорее - исключение. Большинство игр не имеет седловой точки. Впрочем, есть разновидность игр, которые всегда имеют седловую точку и, значит, решаются в чистых стратегиях. Это - так называемые «игры с полной информацией». Игрой с полной информацией называется такая игра, в которой каждый игрок при каждом личном ходе знает всю предысторию ее развития, т. е. результаты всех предыдущих ходов, как личных, так и случайных. Примерами игр с полной информацией могут служить: шашки, шахматы, «крестики и нолики» и т. п.

В теории игр доказывается, что каждая игра с полной информацией имеет седловую точку, и значит, решается в чистых стратегиях. В каждой игре с полной информацией существует пара оптимальных стратегий, дающая устойчивый выигрыш, равный цене игры и. Если такая игра состоит только из личных ходов, то при применении каждым игроком своей оптимальной стратегии она должна кончаться вполне определенным образом - выигрышем, равным цене игры. А значит, если решение игры известно, самая игра теряет смысл!

Возьмем элементарный пример игры с полной информацией: два игрока попеременно кладут пятаки на круглый стол, выбирая произвольно положение центра монеты (взаимное перекрытие монет не разрешается). Выигрывает тот, кто положит последний пятак (когда места для других уже не останется). Легко убедиться, что исход этой игры, в сущности, предрешен. Есть определенная стратегия, обеспечивающая выигрыш тому из игроков, кто кладет монету первым.

А именно, он должен первый раз положить пятак в центре стола, а затем на каждый ход противника отвечать симметричным ходом. Очевидно, как бы ни вел себя противник, ему не избежать проигрыша. Точно так же обстоит дело и с шахматами и вообще играми с полной информацией: любая из них, записанная в матричной форме, имеет седловую точку, и значит, решение в чистых стратегиях, а следовательно, имеет смысл только до тех пор, пока это решение не найдено. Скажем, шахматная игра либо всегда кончается выигрышем белых, либо всегда - выигрышем черных, либо всегда - ничьей, только чем именно - мы пока не знаем (к счастью для любителей шахмат). Прибавим еще: вряд ли будем знать и в обозримом будущем, ибо число стратегий так огромно, что крайне трудно (если не невозможно) привести игру к матричной форме и найти в ней седловую точку.

А теперь спросим себя, как быть, если игра не имеет седловой точки: Ну что же, если каждый игрок вынужден выбрать одну-единственную чистую стратегию, то делать нечего: надо руководствоваться принципом минимакса. Другое дело, если можно свои стратегии «смешивать», чередовать случайным образом с какими-то вероятностями. Применение смешанных стратегий мыслится таким образом: игра повторяется много раз; перед каждой партией игры, когда игроку предоставляется личный ход, он «передоверяет» свой выбор случайности, «бросает жребий», и берет ту стратегию, которая выпала (как организовать жребий, мы уже знаем из предыдущей главы).

Смешанные стратегии в теории игр представляют собой модель изменчивой, гибкой тактики, когда ни один из игроков не знает, как поведет себя противник в данной партии. Такая тактика (правда, обычно безо всяких математических обоснований) часто применяется в карточных играх. Заметим при этом, что лучший способ скрыть от противника свое поведение - это придать ему случайный характер и, значит, самому не знать заранее, как ты поступишь.

Итак, поговорим о смешанных стратегиях. Будем обозначать смешанные стратегии игроков А и В соответственно где (образующие в сумме единицу) - вероятности применения игроком А стратегий - вероятности применения игроком В стратегий

В частном случае, когда все вероятности, кроме одной, равны нулю, а эта одна - единице, смешанная стратегия превращается в чистую.

Существует основная теорема теории игр: любая конечная игра двух лиц с нулевой суммой имеет по крайней мере одно решение - пару оптимальных стратегий, в общем случае смешанных и соответствующую цену

Пара оптимальных стратегий образующих решение игры, обладает следующим свойством: если один из игроков придерживается своей оптимальной стратегии, то другому не может быть выгодно отступать от своей. Эта пара стратегий образует в игре некое положение равновесия: один игрок хочет обратить выигрыш в максимум, другой - в минймум, каждый тянет в свою сторону и, при разумном поведении обоих, устанавливается равновесие и устойчивый выигрыш v. Если то игра выгодна для нас, если - для противника; при игра «справедливая», одинаково выгодная для обоих участников.

Рассмотрим пример игры без седловой точки и приведем (без доказательства) ее решение. Игра состоит в следующем: два игрока А я В одновременно и не сговариваясь показывают один, два или три пальца. Выигрыш решает общее количество пальцев: если оно четное, выигрывает А и получает у В сумму, равную этому числу; если нечетное, то, наоборот, А платит В сумму, равную этому числу. Как поступать игрокам?

Составим матрицу игры. В одной партии у каждого игрока три стратегии: показать один, два или три пальца. Матрица 3х3 дана в таблице 26.5; в дополнительном правом столбце приведены минимумы строк, а в дополнительной нижней строке - максимумы столбцов.

Нижняя цена игры и соответствует стратегии Это значит, что при разумном, осторожном поведении, мы гарантируем, что не проиграем больше, чем 3. Слабое утешение, но все же лучше, чем, скажем, выигрыш - 5, встречающийся в некоторых клетках матрицы. Плохо нам, игроку Л... Но утешимся: положение противника, кажется, еще хуже: нижняя цена игры при. разумном поведении он отдаст нам минимум 4.

Тесты для итогового контроля

1. Антагонистическая игра может быть задана:

а) множеством стратегий обоих игроков и седловой точкой.

б) множеством стратегий обоих игроков и функцией выигрыша первого игрока.

2. Цена игры существует для матричных игр в смешанных стратегиях всегда.

а) да.

3.Если в матрице выигрышей все столбцы одинаковы и имеют вид (4 5 0 1), то какая стратегия оптимальна для 1-го игрока?

а) первая.

б)вторая.

в)любая из четырех.

4.Пусть в матричной игре одна из смешанных стратегий 1-го игрока имеет вид (0.3, 0.7), а одна из смешанных стратегий 2-го игрока имеет вид (0.4, 0, 0.6). Какова размерность этой матрицы?

а) 2*3.

в) другая размерность.

5. Принцип доминирования позволяет удалять из матрицы за один шаг:

а) целиком строки.

б) отдельные числа.

6.В графическом методе решения игр 2*m непосредственно из графика находят:

а) оптимальные стратегии обоих игроков.

б) цену игры и оптимальные стратегии 2-го игрока.

в) цену игры и оптимальные стратегии 1-го игрока.

7.График нижней огибающей для графического метода решения игр 2*m представляет собой в общем случае:

а) ломаную.

б) прямую.

в) параболу.

8. В матричной игре 2*2 две компоненты смешанной стратегии игрока:

а) определяют значения друг друга.

б) независимы.

9. В матричной игре элемент aij представляет собой:

а) выигрыш 1-го игрока при использовании им i-й стратегии, а 2-м – j-й стратегии.

б) оптимальную стратегию 1-го игрока при использовании противником i-й или j-й стратегии.


в) проигрыш 1-го игрока при использовании им j-й стратегии, а 2-м – i-й стратегии.

10.Элемент матрицы aij соответствует седловой точке. Возможны следующие ситуации:

а) этот элемент строго меньше всех в строке.

б) этот элемент второй по порядку в строке.

11. В методе Брауна-Робинсон каждый игрок при выборе стратегии на следующем шаге руководствуется:

а) стратегиями противника на предыдущих шагах.

б) своими стратегиями на предыдущих шагах.

в) чем-то еще.

12. По критерию математического ожидания каждый игрок исходит из того, что:

а) случится наихудшая для него ситуация.

в) все или некоторые ситуации возможны с некоторыми заданными вероятностями.

13. Пусть матричная игра задана матрицей, в которой все элементы отрицательны. Цена игры положительна:

б) нет.

в) нет однозначного ответа.

14. Цена игры - это:

а) число.

б) вектор.

в) матрица.

15.Какое максимальное число седловых точек может быть в игре размерности 5*5 (матрица может содержать любые числа) :

16. Пусть в матричной игре размерности 2*3 одна из смешанных стратегий 1-го игрока имеет вид (0.3, 0.7), а одна из смешанных стратегий 2-го игрока имеет вид (0.3, x, 0.5). Чему равно число x?

в) другому числу.

17. Для какой размерности игровой матрицы критерий Вальда обращается в критерий Лапласа?

в)только в других случаях.

18. Верхняя цена игры всегда меньше нижней цены игры.

б) нет.

б) вопрос некорректен.

19. Какие стратегии бывают в матричной игре:

а) чистые.

б) смешанные.

в) и те, и те.

20. Могут ли в какой-то антагонистической игре значения функции выигрыша обоих игроков для некоторых значений переменных равняться 1?

а) всегда.

б) иногда.

в) никогда.

21.Пусть в матричной игре одна из смешанных стратегий 1-го игрока имеет вид (0.3, 0.7), а одна из смешанных стратегий 2-го игрока имеет вид (0.4, 0.1,0.1,0.4). Какова размерность этой матрицы?

в) иная размерность.

22. Принцип доминирования позволяет удалять из матрицы за один шаг:

а) целиком столбцы,

б) отдельные числа.

в) подматрицы меньших размеров.

23. В матричной игре 3*3 две компоненты смешанной стратегии игрока:

а) определяют третью.

б) не определяют.

24. В матричной игре элемент aij представляет собой:

а) проигрыш 2-го игрока при использовании им j-й стратегии, а 2-м – i-й стратегии .

б) оптимальную стратегию 2-го игрока при использовании противником i-й или j-й стратегии,

в) выигрыш 1-го игрока при использовании им j-й стратегии, а 2-м – i-й стратегии,

25. Элемент матрицы aij соответствует седловой точке. Возможны следующие ситуации:

а) этот элемент больше всех в столбце.

б) этот элемент строго больше всех по порядку в строке.

в) в строке есть элементы и больше, и меньше, чем этот элемент.

26. По критерию Вальда каждый игрок исходит из того, что:

а) случится наиболее плохая для него ситуация.

б) все ситуации равновозможны.

в) все ситуации возможны с некоторыми заданными вероятностями.

27. Нижняя цена меньше верхней цены игры:

б) не всегда.

в) никогда.

28. Сумма компонент смешанной стратегия для матричной игры всегда:

а) равна 1.

б) неотрицательна.

в) положительна.

г) не всегда.

29. Пусть в матричной игре размерности 2*3 одна из смешанных стратегий 1-го игрока имеет вид (0.3, 0.7), а одна из смешанных стратегий 2-го игрока имеет вид (0.2, x, x). Чему равно число x?

Называется игра двух лиц с нулевой суммой, в которой в распоряжении каждого из них имеется конечное множество стратегий. Правила матричной игры определяет платёжная матрица, элементы которой - выигрыши первого игрока, которые являются также проигрышами второго игрока.

Матричная игра является антагонистической игрой. Первый игрок получает максимальный гарантированный (не зависящий от поведения второго игрока) выигрыш, равный цене игры, аналогично, второй игрок добивается минимального гарантированного проигрыша.

Под стратегией понимается совокупность правил (принципов), определяющих выбор варианта действий при каждом личном ходе игрока в зависимости от сложившейся ситуации.

Теперь обо всём по порядку и подробно.

Платёжная матрица, чистые стратегии, цена игры

В матричной игре её правила определяет платёжная матрица .

Рассмотрим игру, в которой имеются два участника: первый игрок и второй игрок. Пусть в распоряжении первого игрока имеется m чистых стратегий, а в распоряжении второго игрока - n чистых стратегий. Поскольку рассматривается игра, естественно, что в этой игре есть выигрыши и есть проигрыши.

В платёжной матрице элементами являются числа, выражающие выигрыши и проигрыши игроков. Выигрыши и проигрыши могут выражаться в пунктах, количестве денег или в других единицах.

Составим платёжную матрицу:

Если первый игрок выбирает i -ю чистую стратегию, а второй игрок - j -ю чистую стратегию, то выигрыш первого игрока составит a ij единиц, а проигрыш второго игрока - также a ij единиц.

Так как a ij + (- a ij ) = 0 , то описанная игра является матричной игрой с нулевой суммой.

Простейшим примером матричной игры может служить бросание монеты. Правила игры следующие. Первый и второй игроки бросают монету и в результате выпадает "орёл" или "решка". Если одновременно выпали "орёл" и "орёл" или "решка" или "решка", то первый игрок выиграет одну единицу, а в других случаях он же проиграет одну единицу (второй игрок выиграет одну единицу). Такие же две стратегии и в распоряжении второго игрока. Соответствующая платёжная матрица будет следующей:

Задача теории игр - определить выбор стратегии первого игрока, которая гарантировала бы ему максимальный средний выигрыш, а также выбор стратегии второго игрока, которая гарантировала бы ему максимальный средний проигрыш.

Как происходит выбор стратегии в матричной игре?

Вновь посмотрим на платёжную матрицу:

Сначала определим величину выигрыша первого игрока, если он использует i -ю чистую стратегию. Если первый игрок использует i -ю чистую стратегию, то логично предположить, что второй игрок будет использовать такую чистую стратегию, благодаря которой выигрыш первого игрока был бы минимальным. В свою очередь первый игрок будет использовать такую чистую стратегию, которая бы обеспечила ему максимальный выигрыш. Исходя из этих условий выигрыш первого игрока, который обозначим как v 1 , называется максиминным выигрышем или нижней ценой игры .

При для этих величин у первого игрока следует поступать следующим образом. Из каждой строки выписать значение минимального элемента и уже из них выбрать максимальный. Таким образом, выигрыш первого игрока будет максимальным из минимальных. Отсюда и название - максиминный выигрыш. Номер строки этого элемента и будет номером чистой стратегии, которую выбирает первый игрок.

Теперь определим величину проигрыша второго игрока, если он использует j -ю стратегию. В этом случае первый игрок использует такую свою чистую стратегию, при которой проигрыш второго игрока был бы максимальным. Второй игрок должен выбрать такую чистую стратегию, при которой его проигрыш был бы минимальным. Проигрыш второго игрока, который обозначим как v 2 , называется минимаксным проигрышем или верхней ценой игры .

При решении задач на цену игры и определение стратегии для определения этих величин у второго игрока следует поступать следующим образом. Из каждого столбца выписать значение максимального элемента и уже из них выбрать минимальный. Таким образом, проигрыш второго игрока будет минимальным из максимальных. Отсюда и название - минимаксный выигрыш. Номер столбца этого элемента и будет номером чистой стратегии, которую выбирает второй игрок. Если второй игрок использует "минимакс", то независимо от выбора стратегии первым игроком, он проиграет не более v 2 единиц.

Пример 1.

.

Наибольший из наименьших элементов строк - 2, это нижняя цена игры, ей соответствует первая строка, следовательно, максиминная стратегия первого игрока первая. Наименьший из наибольших элементов столбцов - 5, это верхняя цена игры, ей соответствует второй столбец, следовательно, минимаксная стратегия второго игрока - вторая.

Теперь, когда мы научились находить нижнюю и верхнюю цену игры, максиминную и минимаксную стратегии, пришло время научиться обозначать эти понятия формально.

Итак, гарантированный выигрыш первого игрока:

Первый игрок должен выбрать чистую стратегию, которая обеспечивала бы ему максимальный из минимальных выигрышей. Этот выигрыш (максимин) обозначается так:

.

Первый игрок использует такую свою чистую стратегию, чтобы проигрыш второго игрока был максимальным. Этот проигрыш обозначается так:

Второй игрок должен выбрать свою чистую стратегию так, чтобы его проигрыш был минимальным. Этот проигрыш (минимакс) обозначается так:

.

Ещё пример из этой же серии.

Пример 2. Дана матричная игра с платёжной матрицей

.

Определить максиминную стратегию первого игрока, минимаксную стратегию второго игрока, нижнюю и верхнюю цену игры.

Решение. Справа от платёжной матрицы выпишем наименьшие элементы в её строках и отметим максимальный из них, а снизу от матрицы - наибольшие элементы в столбцах и выберем минимальный из них:

Наибольший из наименьших элементов строк - 3, это нижняя цена игры, ей соответствует вторая строка, следовательно, максиминная стратегия первого игрока вторая. Наименьший из наибольших элементов столбцов - 5, это верхняя цена игры, ей соответствует первый столбец, следовательно, минимаксная стратегия второго игрока - первая.

Седловая точка в матричных играх

Если верхняя и нижняя цена игры одинаковая, то считается, что матричная игра имеет седловую точку. Верно и обратное утверждение: если матричная игра имеет седловую точку, то верхняя и нижняя цены матричной игры одинаковы. Соответствующий элемент одновременно является наименьшим в строке и наибольшим в столбце и равен цене игры.

Таким образом, если , то - оптимальная чистая стратегия первого игрока, а - оптимальная чистая стратегия второго игрока. То есть равные между собой нижняя и верхняя цены игры достигаются на одной и той же паре стратегий.

В этом случае матричная игра имеет решение в чистых стратегиях .

Пример 3. Дана матричная игра с платёжной матрицей

.

Решение. Справа от платёжной матрицы выпишем наименьшие элементы в её строках и отметим максимальный из них, а снизу от матрицы - наибольшие элементы в столбцах и выберем минимальный из них:

Нижняя цена игры совпадает с верхней ценой игры. Таким образом, цена игры равна 5. То есть . Цена игры равна значению седловой точки . Максиминная стратегия первого игрока - вторая чистая стратегия, а минимаксная стратегия второго игрока - третья чистая стратегия. Данная матричная игра имеет решение в чистых стратегиях.

Решить задачу на матричную игру самостоятельно, а затем посмотреть решение

Пример 4. Дана матричная игра с платёжной матрицей

.

Найти нижнюю и верхнюю цену игры. Имеет ли данная матричная игра седловую точку?

Матричные игры с оптимальной смешанной стратегией

В большинстве случаев матричная игра не имеет седловой точки, поэтому соответствующая матричная игра не имеет решений в чистых стратегиях.

Но она имеет решение в оптимальных смешанных стратегиях. Для их нахождения нужно принять, что игра повторяется достаточное число раз, чтобы на основании опыта можно было предположить, какая стратегия является более предпочтительной. Поэтому решение связывается с понятием вероятности и среднего (математического ожидания). В окончательном же решении есть и аналог седловой точки (то есть равенства нижней и верхней цены игры), и аналог соответствующих им стратегий.

Итак, чтобы чтобы первый игрок получил максимальный средний выигрыш и чтобы средний проигрыш второго игрока был минимальным, чистые стратегии следует использовать с определённой вероятностью.

Если первый игрок использует чистые стратегии с вероятностями , то вектор называется смешанной стратегией первого игрока. Иначе говоря, это "смесь" чистых стратегий. При этом сумма этих вероятностей равна единице:

.

Если второй игрок использует чистые стратегии с вероятностями , то вектор называется смешанной стратегией второго игрока. При этом сумма этих вероятностей равна единице:

.

Если первый игрок использует смешанную стратегию p , а второй игрок - смешанную стратегию q , то имеет смысл математическое ожидание выигрыша первого игрока (проигрыша второго игрока). Чтобы его найти, нужно перемножить вектор смешанной стратении первого игрока (который будет матрицей из одной строки), платёжную матрицу и вектор смешанной стратегии второго игрока (который будет матрицей из одного столбца):

.

Пример 5. Дана матричная игра с платёжной матрицей

.

Определить математическое ожидание выигрыша первого игрока (проигрыша второго игрока), если смешанная стратегия первого игрока , а смешанная стратегия второго игрока .

Решение. Согласно формуле математического ожидания выигрыша первого игрока (проигрыша второго игрока) оно равно произведению вектора смешанной стратегии первого игрока, платёжной матрицы и вектора смешанной стратегии второго игрока:

первого игрока называется такая смешанная стратегия , которая обеспечивала бы ему максимальный средний выигрыш , если игра повторяется достаточное число раз.

Оптимальной смешанной стратегией второго игрока называется такая смешанная стратегия , которая обеспечивала бы ему минимальный средний проигрыш , если игра повторяется достаточное число раз.

По аналогии с обозначениями максимина и минимакса в случах чистых стратегий оптимальные смешанные стратегии обозначаются так (и увязываются с математическим ожиданием, то есть средним, выигрыша первого игрока и проигрыша второго игрока):

,

.

В таком случае для функции E существует седловая точка , что означает равенство .

Для того, чтобы найти оптимальные смешанные стратегии и седловую точку, то есть решить матричную игру в смешанных стратегиях , нужно свести матричную игру к задаче линейного программирования, то есть к оптимизационной задаче, и решить соответствующую задачу линейного программирования.

Сведение матричной игры к задаче линейного программирования

Для того, чтобы решить матричную игру в смешанных стратегиях, нужно составить прямую задачу линейного программирования и двойственную ей задачу . В двойственной задаче расширенная матрица, в которой хранятся коэффициенты при переменных в системе ограничений, свободные члены и коэффициенты при переменных в функции цели, транспонируется. При этом минимуму функции цели исходной задачи ставится в соответствие максимум в двойственной задаче.

Функция цели в прямой задаче линейного программирования:

.

Система ограничений в прямой задаче линейного программирования:

Функция цели в двойственной задаче:

.

Система ограничений в двойственной задаче:

Оптимальный план прямой задачи линейного программирования обозначим

,

а оптимальный план двойственной задачи обозначим

Линейные формы для соответствующих оптимальных планов обозначим и ,

а находить их нужно как суммы соответствующих координат оптимальных планов.

В соответствии определениям предыдущего параграфа и координатами оптимальных планов, в силе следующие смешанные стратегии первого и второго игроков:

.

Математики-теоретики доказали, что цена игры следующим образом выражается через линейные формы оптимальных планов:

,

то есть является величиной, обратной суммам координат оптимальных планов.

Нам, практикам, остаётся лишь использовать эту формулу для решения матричных игр в смешанных стратегиях. Как и формулы для нахождения оптимальных смешанных стратегий соответственно первого и второго игроков:

в которых вторые сомножители - векторы. Оптимальные смешанные стратегии также, как мы уже определили в предыдущем параграфе, являются векторами. Поэтому, умножив число (цену игры) на вектор (с координатами оптимальных планов) получим также вектор.

Пример 6. Дана матричная игра с платёжной матрицей

.

Найти цену игры V и оптимальные смешанные стратегии и .

Решение. Составляем соответствующую данной матричной игре задачу линейного программирования:

Получаем решение прямой задачи:

.

Находим линейную форму оптимальных планов как сумму найденных координат.

Рекомендуем почитать

Наверх